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ABSTRACT: The object-based verification procedure described in a recent paper by Duda and Turner was expanded
herein to compare forecasts of composite reflectivity and 6-h precipitation objects between the two most recent operational
versions of the High-Resolution Rapid Refresh (HRRR) model, versions 3 and 4, over an expanded set of warm season
cases in 2019 and 2020. In addition to analyzing all objects, a reduced set of forecast–observation object pairs was con-
structed by taking the best forecast match to a given observation object for the purposes of bias-reduction and unequivocal
object comparison. Despite the apparent signal of improved scalar metrics such as the object-based threat score in
HRRRv4 compared to HRRRv3, no statistically significant differences were found between the models. Nonetheless,
many object attribute comparisons revealed indications of improved forecast performance in HRRRv4 compared to
HRRRv3. For example, HRRRv4 had a reduced overforecasting bias for medium- and large-sized reflectivity objects, and
all objects during the afternoon. HRRRv4 also better replicated the distribution of object complexity and aspect ratio. Re-
sults for 6-h precipitation also suggested superior performance in HRRRv4 over HRRRv3. However, HRRRv4 was worse
with centroid displacement errors and more severely overforecast objects with a high maximum precipitation amount.
Overall, this exercise revealed multiple forecast deficiencies in the HRRR, which enables developers to direct development
efforts on detailed and specific endeavors to improve model forecasts.

SIGNIFICANCE STATEMENT: This work builds upon the authors’ prior work in assessing model forecast quality using
an alternative verification method}object-based verification. In this paper we verified two versions of the same model (one an
upgrade from the other) that were making forecasts covering the same time window, using the object-based verification
method.We found that the updated model was not statistically significantly better, although there were indications it performed
better in certain aspects such as capturing the change in the number of storms during the daytime.We were able to identify spe-
cific problem areas in the models, which helps us direct model developers in their efforts to further improve the model.

KEYWORDS: Precipitation; Thunderstorms; Forecast verification/skill; Model comparison;
Model evaluation/performance; Numerical weather prediction/forecasting

1. Introduction

An object-based approach to forecast verification for numeri-
cal weather prediction (NWP) models is an alternative to the
legacy approach in which forecast fields are verified considering
a deterministic or probabilistic event at each model grid point.
Object-based verification is particularly useful for feature-based
fields in convection-allowing models (CAM), fields such as ra-
dar reflectivity and updraft helicity, the horizontal structure of
which is typically dominated by an “empty” floor (e.g., no tangi-
ble field value, often represented using a value of 0.0) and con-
taining discrete contiguous collections of points at which the
field is nonempty. The legacy grid-to-grid verification approach,
which is used heavily in the NOAA verification systems to eval-
uate models during their development (e.g., Turner et al. 2020),
evaluates events at each grid point and, due to the typically
low base rates of the events of interest, are dominated by null
events.

In contrast, the object-based approach condenses the entire
field into a set of objects that each encompass many grid points.

A set of attributes such as location, size, shape, and structure
are calculated to describe each object. In modern CAMs, there
are on the order of millions or tens of millions of grid points in
the horizontal. In the object-based approach, the information in
such a horizontal grid space is typically reduced to tens to thou-
sands of objects instead. Therefore, the object-based approach
involves removal of data which can be a disadvantage compared
to the grid-to-grid verification such that a perfect forecast could
be calculated in object space when there is not a perfect corre-
spondence between the forecast and truth field at each grid
point. However, given the known difficulties with grid-to-grid
verification of feature-based fields in CAMs (e.g., the “double
penalty” problem1), the object-based approach can be useful in
identifying behaviors in NWP models that grid-to-grid verifica-
tion is unable to identify. For example, an object-based tech-
nique can distinguish between these two behaviors: forecast
objects being larger than observation objects; the forecast con-
taining more objects than the observations. The gridpoint-based
frequency bias, on the other hand, could have the same value in
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1 A particularly helpful example of this problem is illustrated
qualitatively and quantitatively as test “geom001” in Ahijevych
et al. (2009).
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both scenarios. While this distinction may not be important
when considering a simple scalar metric such as the root-mean-
square error, the distinction could be meaningful to forecast de-
velopers and users since it could help isolate the underlying
physical or dynamical mechanisms responsible for model fore-
cast deficiencies.

Classifying objects in feature-specific gridded fields can offer
other insights even if comparison to observation is not a goal.
Guerra et al. (2022), for example, applied an object-based tech-
nique to forecasts from the National Severe Storms Labora-
tory’s Warn-on Forecast System (WoFS) to compare convective
storm existence by the age of the storm. Flora et al. (2019) per-
formed an object-based verification of rotating thunderstorms
in WoFS, even incorporating probabilistic fields to generate ob-
jects and comparing across fields. Britt et al. (2020) applied the
object-based system setup in Skinner et al. (2018) for evaluating
WoFS reflectivity and updraft helicity forecasts to extract inflow
environment information near supercell thunderstorms.

Duda and Turner (2021, hereafter DT21) provided a dem-
onstration of some of the insights that can be gained from
object-based verification of a CAM. They presented a slate of
verification analyses from forecasts of composite reflectivity
from the operational High-Resolution Rapid Refresh model
version 3 (HRRRv3; Benjamin et al. 2021, 2022; Dowell et al.
2022; James et al. 2022; Weygandt et al. 2022) using warm-
season cases from 2019. They discovered that HRRRv3 pro-
duced too many storm objects, most of which were small.
Small-sized objects were also too smooth compared to obser-
vations whereas larger objects were not, illustrating the poor
resolution of individual convective storm cells in a 3-km model.
Also, a strange artifact presented as a spike in object shape
that led to an investigation of a storm artifact presented herein.
Object-based verification has continued to grow since DT21
(for a discussion of prior research, see the references in DT21).
Recently, Chen et al. (2022) published a study on object-based
verification of supercell storms in a short-term convection-
allowing ensemble framework similar to the modeling systems
featured herein, although their emphasis was on performance
differences between different radar data assimilation methods
for reflectivity and updraft helicity tracks. Gallo et al. (2021)
applied an object-based approach using surrogate severe
probability forecasts from HRRRv3 as well as primitive versions
of the upcoming Rapid-Refresh Forecast System, a Finite-
Volume Cubed-based model, from the NOAA Hazardous
Weather Testbed Spring Forecasting Experiment, to assess how
well these models can predict the likelihood and location of se-
vere weather. Finally, Grim et al. (2022) investigated biases in
storm counts and sizes for various storm morphologies in
HRRRv4 and theHRRRensemble (HRRRE;Kalina et al. 2021).

Results from the above studies will be useful for comparison
in this follow-up paper to DT21, upon which we expand in the
following ways. Version 4 of the HRRR became operational in
December 2020 but was running in a preoperational phase
(frozen code) in the second half of 2019 and first 11 months of
2020 over a range of cases that overlapped with those covered
by HRRRv3. Therefore, we compare HRRRv3 and HRRRv4
forecasts over a large sample containing parts of the warm sea-
sons of 2019 and 2020. One goal is to identify improvements in

errant aspects of HRRRv3 forecasts in HRRRv4, namely,
overproduction of small objects, but also in more general char-
acter such as storm displacement and object shape. We also
add the 6-h accumulated precipitation field into the verification
suite to expand the investigation to more fields. Finally, we ex-
amine an expanded array of metrics and analyses to look
deeper into the behaviors of the two models.

2. Methods

a. HRRR model description and updates from
version 3 to 4

The HRRR is a Weather Research and Forecasting (WRF)
Model (Skamarock et al. 2019) dynamical core-based convection-
allowing NWP model that provides an 18- or 36-h forecast each
hour, depending on time of day. All operational HRRR versions
use a 1-h preforecast cycle to spin up fine-scale structures from a
background, which, until HRRRv4, was provided by a 1-h Rapid
Refresh forecast (Benjamin et al. 2016). Among the more signifi-
cant updates from HRRRv3 to HRRRv4 was the swap to using
a parallel 3-km ensemble (named the HRRR data assimilation
system, HRRRDAS) to provide flow-dependent background er-
ror covariances in the data assimilation analysis, as well as using
the HRRRDASmean for the initial conditions to the 1-h prefore-
cast. A second major update relevant to the investigation herein
was the implementation of the implicit-explicit vertical advection
(IEVA) scheme described in Wicker and Skamarock (2020).
Previous HRRR versions implemented an ad hoc upper bound
to the temperature tendency in the model microphysics to keep
the model numerically stable during integration, which allowed
for a longer model time step. This temperature tendency limit re-
stricted vertical motion magnitudes, especially in explicit convec-
tive updrafts. The IEVA enabled the removal of this tendency
limit; updraft speeds in WRF modeled convective storms there-
fore dramatically increased. Many more updates to HRRRv4
from HRRRv3 are described in Dowell et al. (2022). While any
of these updates may manifest as differences in the results herein,
it would be very difficult, if not impossible, to meaningfully isolate
each specific update responsible for any differences between the
metrics presented.

b. Case and field selection

The setup for this verification experiment is nearly identical
to that in DT21. Whereas DT21 obtained cases from 1 April to
30 September 2019, herein we sample cases from 15 August to
30 September 2019 and from 1 April to 30 September 2020, a
time when both models were running. This range includes as
many as ;1360 forecast initializations2 of HRRR forecasts ini-
tialized every 3 h (i.e., 0000, 0300, 0600, 0900, 1200, 1500, and
1800 UTC each day). The choice to sample forecasts every 3 h

2 The actual number of forecasts verified (hereafter “cases”) at
a given forecast hour varies based on the availability of archived
forecast and observation files. Also, the forecast length of HRRR
varies according to initialization time. Since only half of the con-
sidered HRRR forecasts ran beyond 18 h, the number of cases at
lengths longer than 18 h is about half of what it is for forecast
lengths of 18 h and less.
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is aimed at reducing autocorrelation/dependence of samples
while also covering a wide range of times of year for improved
sampling of weather regimes, and toward statistical robustness.
Composite reflectivity forecasts are verified hourly through
forecast hour 24 as well as at forecast hours 30 and 36 to exam-
ine object-based statistics at longer lead times. The meteorologi-
cal events of interest include convective storms and associated
heavy precipitation that could produce flooding. Composite re-
flectivity forecasts are verified against Multi-Radar Multi-Sensor
(MRMS; Smith et al. 2016) observations. The 6-h accumulated
precipitation forecasts over the nonoverlapping windows of 0–6,
6–12, 12–18, 18–24, 24–30, and 30–36 forecast hours are verified
using Stage-IV (ST4) precipitation analyses (Du 2011; Hou et al.
2014). The verification domain includes areas within the HRRR
model domain that are within the contiguous United States east
of the Rocky Mountains and immediately offshore of coasts and
across international borders. (See Fig. 3 for an outline of the
verification domain.) Observation fields are interpolated to the
HRRR grid before verifying.

c. Object-based classification

The Method of Object-based Diagnostic Evaluation (MODE;
Davis et al. 2006) is used to identify objects and calculate single-
object and forecast–observation (F-O) object pair attributes for
comparison. We used MODE from version 9.0 of the Model
Evaluation Tools software repository. The input fields to MODE
(HRRR and MRMS composite reflectivity, and ST4 6-h precipi-
tation) are filtered using a circular convolution smoother to re-
move noisy or unwanted small-scale features using a convolution
radius that is controlled in a configuration file. Our interest in
convective storms in this experiment results in selecting a convo-
lution radius of one grid square to minimize the filtering of near-
grid-scale structure in HRRR composite reflectivity as well as in
6-h precipitation, which already implicitly contains some filtering
due to the temporal aggregation of instantaneous precipitation
rate. Magnitude thresholds are then applied to the convolved
fields to classify objects as contiguous sets of grid points at which
the convolved field exceeds the threshold. For composite reflec-
tivity, thresholds of 25, 30, 35, and 40 dBZ are used. For 6-h pre-
cipitation, thresholds of 0.254 (0.01), 2.54 (0.10), 6.35 (0.25),
12.7 (0.50), and 25.4 (1.00) mm (in.) are used to focus on a range
of events including convective storms and heavy rain, both of
which can lead to property damage, injury, and disruption of nor-
mal economic activity. Objects with an area of less than 16 grid
squares (equivalent to 4Dx, a simple threshold to exclude unre-
solved objects) were discarded. While an alternative approach in-
volves selecting a single threshold to define all object sets, we
choose to examine the sensitivity of calculated metrics to a range
of thresholds.

After objects are identified, the original field values are re-
stored to the grid points within the object boundaries, and ob-
ject attributes are computed from the resulting collections of
grid points. MODE computes several object attributes using
graphical techniques (see Table 1 of DT21). One technique
computes a convex hull, the smallest convex perimeter that
completely encompasses the object. It is like wrapping a rub-
ber band around the object. Using that information, object

complexity is calculated as 1.0 2 the ratio of the area of the
object to the area of the convex hull around the object (the
subtraction from 1.0 is to convert the ratio to a positively ori-
ented measure). Another technique fits an inscribing rectan-
gle around the object such that it is just long and wide enough
to contain the object. The width and length of this rectangle
are used to compute the aspect ratio of the object. The mass
of an object is the sum of the gridpoint values within the ob-
ject. The structure of an object can also be measured by the
quantile values of the field magnitudes within an object.

MODE attempts to pair objects by calculating the interest
value between all eligible F-O object pairs. Eligibility is deter-
mined using a threshold centroid distance that is user controlla-
ble. Any pair of objects separated by a distance larger than this
threshold value is not evaluated by MODE (i.e., the interest
value is arbitrarily set to 0.0). The threshold centroid distance
for comparison is set to 500 km for composite reflectivity and
1000 km for 6-h precipitation. These thresholds represent a bal-
ance between cost saving when running MODE and a distance
at which forecast objects are sufficiently close to the observa-
tions to be considered potentially useful. In a sense, this thresh-
old represents a first-order filter to disregard forecast objects
that are too far away from an observed object to be useful.

The interest value output from MODE is a weighted sum of
individual attribute interest values, each calculated from user-
adjustable interest maps, which are functions that convert the ac-
tual attribute difference to a normalized quantity. These interest
maps allow for control over the strictness of the comparison of an
object attribute between the objects in an F-O pair. Attributes
that are compared include three distance measurements (cen-
troid, object boundary, convex hull boundary), the differences in
orientation angle and aspect ratio, and the ratios of the area, cur-
vature, complexity, and a user-controllable percentile value of
the two objects, as well as the consumption ratio, defined as the
fraction of the smaller of the two objects that intersects with the
larger of the two objects. The consumption ratio of a relatively
smaller object that is fully contained within its corresponding
larger object is 1.0. If there is no overlap between two objects, the
consumption ratio for that pair is 0.0. The 95th percentile of com-
posite reflectivity (p95) and the 99th percentile of 6-h precipita-
tion (p99) are used for intensity percentile comparisons, as they
both represent realistic maximum values. Weights for these attri-
bute comparisons are user selectable. We choose to emphasize at-
tributes describing position and size more than others for
composite reflectivity, and to object shape more than object loca-
tion for 6-h precipitation (Table 1). Sensitivity of interest value to
the set of weights has not been rigorously tested and is left for fu-
ture work.

d. Metrics and analyses

We evaluate several types of metrics based on MODE out-
put. Many were detailed in DT21, including the object-based
threat score (OTS), various measures of the central tendency
of the distance between F-O object centroids, continuous
ranked probability scores (CRPS) for object attributes, as
well as a bevy of custom evaluation techniques that sample
across different dimensions of object attribute distributions,
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whether one-dimensional or joint distributions between fore-
casts and observations.

OTS measures the intersection area between objects in a pair
and weights this quantity by the pair interest. It is formulated as

OTS 5
1

Af 1 Ao

∑
p
Ip(apf 1 apo), (1)

where a refers to object area; A is the total area of all objects;
I is the object pair interest; the subscripts f and o correspond
to forecast and observation objects, respectively; and super-
script p refers to an object pair.

With the addition of a second forecast dataset, we can com-
pute the skill version of the CRPS, or the continuous ranked
probability skill score (CRPSS). CRPSS is defined herein as

CRPSS 5 1 2
CRPSHRRRv4

CRPSHRRRv3
, (2)

where HRRRv4 is compared to the reference HRRRv3 fore-
cast system; CRPSS . 0.0 indicates that HRRRv4 outperforms
HRRRv3.

Several metrics, including OTS, require an injective matching
between forecast and observation objects such that a given ob-
ject in either dataset (forecast or observation) can be matched
to at most one object in the other dataset. MODE performs an
unassuming matching of each eligible F-O object pair by consid-
ering whether the interest value for the pair exceeds a threshold
(default value is 0.70). By this construction, an object in one
dataset could be matched to more than one object in the other
dataset. This is problematic for computing OTS and for con-
structing other datasets for analysis. Therefore, as is used in the
computation of OTS, we use what is hereafter referred to as
generalized matching or “reduced set” to perform additional
verification diagnostics (Fig. 1). In the generalized matching
procedure, the set of all F-O pairs at a single forecast lead time
are ranked by interest from highest to lowest. The first pair in
the F-O pair list provides the first entry of the generalized
matching vector of interest values; every subsequent F-O pair
containing either object is precluded from contributing to the
generalized matching vector. This process continues until no
object pairs remain, resulting in a reduced set of F-O pairs
(a subset of the full set) that are unique to each other such
that they are deemed to be the closest match to each other

regardless of whether their interest value exceeds the matching
threshold. If the number of forecast and observation objects in
each set are the same and are sufficiently close to one another,
this procedure creates a bijective mapping between the two ob-
ject sets. Otherwise, either there is a multiplicative object count
forecast bias or some objects are poorly forecast so that some
objects are not used in the subsequent evaluation. Since OTS is
based on this procedure, it means that forecast object count bias
will reduce the OTS value, consistent with an error-prone fore-
cast. For other evaluations, the forecast object count bias should
be considered in tandem to get a fuller picture of the forecast
performance. In a sense, this process amounts to a form of
object-based bias correction, and therefore can be used to deter-
mine how good the model might be if the correct number of ob-
jects were forecast.

The differences in the values of many scalar metrics be-
tween HRRRv3 and HRRRv4 are tested for statistical sig-
nificance using a circular block bootstrapping technique
(Gilleland 2020) with a block size of eight forecasts (roughly
filling a 24-h period, even though the decorrelation time of
composite reflectivity and 6-h precipitation forecasts is ar-
guably substantially shorter). Through this procedure it was
found that none of the differences between HRRRv3 and
HRRRv4 for any of the metrics, thresholds, and forecast lengths
tested were statistically significant, and therefore all further
discussion of comparative differences between HRRRv3
and HRRRv4 are considered in the context of statistical
nonsignificance.

3. Composite reflectivity results

The total number of composite reflectivity objects that
were identified varied with forecast length and threshold.
At the 25-dBZ threshold, the number of composite reflec-
tivity objects ranged from about 80 000 to over 100 000 over
about 1350 cases in each of the first 18 forecast hours. After
18 h the numbers approximately halved; about 50 000 ob-
jects were classified over about 650 cases each hour. For di-
agnostics that considered all forecast hours aggregated
together, there were over 2 million objects. Around 70 000,
50000, and 35000 objects were classified each forecast hour
(within the first 18 h) at the 30-, 35-, and 40-dBZ thresholds,
respectively.

TABLE 1. Interest weight settings in MODE.

Attribute name Composite reflectivity 6-h precipitation

Centroid distance 5.0 2.0
Boundary distance 4.0 1.0
Convex hull distance 0.0 0.0
Orientation angle difference 0.0 1.0
Aspect ratio difference 0.0 1.0
Area ratio 4.0 5.0
Consumption ratio 2.0 2.5
Curvature ratio 0.0 0.0
Complexity ratio 0.5 1.0
Intensity percentile ratio (percentile) 3.5 (95) 3.0 (99)
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a. Object frequency bias

DT21 found that HRRRv3 produced too many composite re-
flectivity objects throughout the forecast, with the overforecast-
ing bias increasing with forecast length. James et al. (2022) also
found an increasing bias with forecast length, but with a differ-
ent sign during the early hours. This characteristic was evident
in HRRRv4 forecasts as well (Fig. 2a), but the pattern differed

somewhat from that in HRRRv3. The object-based frequency
bias was slightly improved in HRRRv4 during the early forecast
hours (especially at the 40-dBZ threshold) but was degraded
after about forecast hour 8, similar to that seen in James et al.
(2022). An exception to this behavior was at the 40-dBZ thresh-
old, where the frequency biases of the two models were the
same from forecast hours 9–17, and after which HRRRv4 re-
tained a better frequency bias through 36 forecast hours. The

FIG. 1. Ad hoc example illustrating the generalized matching procedure for a forecast (blue) with six objects and an
observation (orange) dataset with four objects. The 2D interest table (at top right) is sorted by interest (at bottom
right), and the vector of generalized matched pairs are built from that list by eliminating pairs that share a common ob-
ject with one already selected with higher interest (eliminations due to a given pair are color coded).
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change in initial condition design or model physics could be re-
sponsible for this difference in behavior, but there are too many
factors to be certain. Frequency bias by valid time of day
showed a different pattern (Fig. 2b). While HRRRv4 had a
slightly higher bias during most of the day, the bias decreased
substantially between 1500 and 0000 UTC (late morning to late
afternoon), becoming lower than that of HRRRv3. This behav-
ior was present regardless of the age of the forecast, although it
was more prominent in older forecasts (not shown). Therefore,

despite the apparent degradation in overall frequency bias (seen
in Fig. 2a for forecast hours beyond 8 and at thresholds of
35 dBZ and lower), it was unevenly distributed in such a way
that forecasts of diurnally forced convection appeared to be im-
proved in HRRRv4.

There are many other aspects of the overforecasting issue
that can be teased out of MODE output and thus provide
forecast developers with better indications of which model as-
pects need improvement. For example, much of the increase
in the storm count bias in HRRRv4 over HRRRv3 was found
over the Midwest and Great Lakes regions (Fig. 3a) where
the ratio of the number of HRRRv4 to HRRRv3 object cent-
roids was greater than 1.0. On the other hand, the ratio was
inverted over the High Plains, much of Texas, and the South-
east United States. This discrepancy is generally insensitive to
forecast lead time but contained a diurnal signal (Figs. 3b,c).
HRRRv4 produced more storms than HRRRv3 across all but
the northern High Plains from the late evening through over-
night and into the next morning, with the difference being
domain-wide during the middle of the overnight. It was mainly
during the afternoon when the reduced storm count was evident
in HRRRv4 in the same regions where the diurnally aggregated
ratio was also less than 1.0. The spatial pattern of object fre-
quency bias for HRRRv4 was the same as for HRRRv3 (cf.
Fig. 7 of DT21), so problems remain with overforecasting of
storms across most of the eastern United States, but storms
were forecast with approximately the correct frequency on the
High Plains in both models. The representation of land surface
interactions and boundary layer flows is suspected to play a role
in these behaviors, but a deeper investigation is beyond the
scope of this paper.

b. Total forecast metrics

OTS suggests composite reflectivity forecasts from HRRRv4
were better than those from HRRRv3 regardless of reflectivity
threshold or forecast length (Fig. 4a). At all but the 40-dBZ
threshold, the OTS difference between the two model versions
was approximately constant with forecast length. At 40 dBZ,
however, the two forecasts were essentially identical in perfor-
mance during the 7–15-h forecast window. Also, consistent with
the lower frequency biases during the afternoon, the OTS for
HRRRv4 was higher than that for HRRRv3 during the after-
noon as well (Fig. 4b). OTS was overall highest during the over-
night when convective activity is low.

Minor evidence was found to suggest that HRRRv4 fore-
cast storms closer to observed storms than HRRRv3, as quan-
tified by the mean distance between the centroids of objects
using generalized matching (Fig. 5). The mean distance for
HRRRv4 was only a few multiples of Dx lower than that for
HRRRv3 at all but the 40-dBZ threshold during the forecast,
with the largest improvement occurring during the 1–8-h fore-
cast window (Fig. 5a). At the 40-dBZ threshold, the mean dis-
tance for the two models oscillated around each other so that
neither model forecast storms closer to the observations con-
sistently. Interestingly, though, the mean distance metric
showed a dependency on time of day. HRRRv4 had a lower
mean centroid distance than HRRRv3 at all times of day

FIG. 2. Object-based frequency bias aggregated across all fore-
cast cases as a function of (a) forecast lead time and (b) valid time
of day.
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FIG. 3. Ratio of reflectivity object counts between HRRRv4 (numerator) and HRRRv3
(denominator) aggregated across all forecast hours and valid (a) at all hours of the day,
(b) from 0600 to 1100 UTC, and (c) from 1800 to 2300 UTC. Objects are defined using a
25-dBZ reflectivity threshold. The verification domain is delineated in a thick black outline.
Location bins were spaced by 1.08 latitude and longitude.
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except the afternoon, when its frequency bias was lower than
that of HRRRv3 (Fig. 5b). Considering that the spatial distri-
bution of forecast object centroid displacements from their
corresponding observation objects was essentially identical
between the two models (not shown) and the apparent in-
verse correlation between frequency bias and mean centroid
distance, the difference in mean distance between the two
models likely includes a “paintball effect” in which the model
that produced more storm objects achieved a lower mean dis-
tance by chance effects of covering the vicinity of observed

storms with forecast storms, as opposed to better forecast dis-
crimination in which forecast objects were closer to their ob-
servation counterparts only where observation objects were
present.

MODE enables investigation of the spatial variance of ob-
ject attributes as well, and there were discrepancies between
HRRRv3 and HRRRv4 as well as between each model and
the MRMS observations. Composite reflectivity object aspect
ratio in the MRMS data tended to be lower in the northern
and eastern halves of the United States and larger across por-
tions of the southeastern United States and along most of the
Texas and High Plains (Fig. 6a). An overall high bias is present
in both models, with HRRRv3 having a higher aspect ratio

FIG. 5. Mean distance between centroids of F-O object pairs ob-
tained from generalized matching as a function of (a) forecast lead
time and (b) valid time of day but aggregated only across forecasts
of length 12–18 h.

FIG. 4. As in Fig. 2, but for OTS.
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than HRRRv4, but the spatial pattern of aspect ratio is not quite
the same in the models as in the MRMS. In particular, the me-
dian aspect ratio tended to be at a minimum from Nebraska
northward through North Dakota (Figs. 6b,c). No other object at-
tribute exhibited a similar pattern in that area, so the implication
is that more storms having a somewhat more linear shape (or
fewer circular storms) must have occurred there in the models,
whereas observed linear storms tended to be spread more evenly
across the northern United States.

The median reflectivity p95 values tended to increase from
north to south in the MRMS (Fig. 6d) with minor longitudinal
variation. The overall pattern of median p95 values in both
models broadly agreed with that of the MRMS, but there
were biases of this attribute as well. In particular, HRRRv3
had a high bias in the northern United States and a low bias
in the southern United States (Fig. 6e). On the other hand,
HRRRv4 had a high bias generally everywhere (Fig. 6f). The
IEVA in HRRRv4 could be responsible for the increased

FIG. 6. Spatial distribution of median (a)–(c) object aspect ratio and (d)–(f) p95 from the 25-dBZ threshold data. (top)
MRMS, (middle) HRRRv3, and (bottom) HRRRv4 data.
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p95, as stronger updrafts tend to promote higher reflectivity
values.

In both models, objects tended to be slightly larger on the
High Plains and lower in the southeast United States. Objects
also tended to be more complex in the northern United States
and less complex in the southern United States. Coupling this
information with the information on spatial aspect ratio pat-
terns suggests the storm mode was more commonly cellular in
the southern and Southeast United States and more linear in
the northern United States and on the plains, with embedded
mesoscale convective systems also being more common there.

c. Differences by object size

1) OBJECT COUNT AND SIZE MISMATCHES

DT21 observed that the majority of composite reflectivity
objects in HRRRv3 were small, with areas of O(100) km2.
These objects were found to be overforecast. This characteris-
tic was also found in HRRRv4. Considering the effective res-
olution of the WRF model of 7Dx (Skamarock 2004), a fully
resolved two-dimensional feature could be considered to have
an area of 49Dx2 (441 km2). On the other end of the size spec-
trum, a potentially useful size threshold discriminates convec-
tion having or not having mesoscale organization. Therefore,
like the classification-by-area in DT21, here we analyzed
object attributes from three independent size bins: small
(area# 441 km2), medium sized (441 km2 , area# 20000 km2),
and large (area . 20000 km2) in addition to analysis of the full
set of objects.

Using the above size classifications, about 57% (60%) of
objects were classified as small in HRRRv3 (HRRRv4), 41%
(38%) as medium sized, and 1% (1%) as large at the 25-dBZ
threshold. For higher reflectivity thresholds, the area distribu-
tion of composite reflectivity objects shifted increasingly to-
ward small objects such that about 69% of all objects were
classified as small at the 40-dBZ threshold in both HRRRv3
and HRRRv4, and the fraction of objects considered large
was ,,1%. Therefore, the behavior of statistical distribu-
tions of object attributes and performance metrics was
strongly linked to the behavior of the smallest objects. Also,
these size classification proportions were weighted more to-
ward smaller objects compared to the observations, which
manifests as object count biases greater than 1.0 in the
smaller size bins for both HRRRv3 and HRRRv4 (Figs. 7a
and 8a). The high bias for small objects was pervasive through-
out the forecasts (Fig. 7a).

It is clear from Fig. 7b that the decrease in frequency bias dur-
ing the afternoon in HRRRv4 forecasts is mostly due to a de-
crease in the overforecasting of small objects, but with some
contribution from medium-sized objects as well. There are dif-
ferences in the behaviors of the high biases within these broader
size categories, however. Specifically, HRRRv4 tended to have
a worse high bias for the smallest objects compared to HRRRv3
and for objects ;7500 km2 and larger. This result for HRRRv4
was also found in Grim et al. (2022). In size bins between 400
and 7500 km2, however, HRRRv4 was slightly less biased than
HRRRv3 at all thresholds. In fact, at the 25-dBZ threshold,
HRRRv4 was overall less biased than HRRRv3 for all objects

larger than 400 km2 (Fig. 8a). However, since HRRRv3 was nearly
unbiased for the large-sized objects, that means HRRRv4 had a
high count bias even for the largest objects (area . 20000 km2;
Fig. 7).

DT21 contended that the particular distribution of fre-
quency biases by object size obtained from HRRRv3 fore-
casts was due to the overproduction of new objects within a
size bin rather than a mismatch between the sizes of compara-
ble objects in F-O pairs. Here we computed the ratio of the
areas of the objects in each F-O pair using generalized match-
ing to help settle this debate. Figure 8b shows that for both

FIG. 7. Frequency bias of composite reflectivity objects subdi-
vided by size as a function of (a) forecast length and (b) valid time
of day using the 25-dBZ threshold.
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the smallest and largest size bins the median ratio of forecast
object area to observation object area in a given pair was
close to 1.0, suggesting that the forecast object that best corre-
sponded to each observation object in those size bins tended
to be close to the correct size. Therefore, the frequency biases.
1.0 in the small size bins (Fig. 8a) suggests the models are
producing too many small storms, many of which are falsely

predicted (i.e., there is no observed storm to correspond to),
whereas the frequency bias near 1.0 in the largest bins suggests
an overall good forecast. However, for the other size bins, the
median area ratio was substantially lower than 1.0, reaching as
low as 0.50 for some area bins in HRRRv3. Therefore, for F-O
pairs containing a medium-sized observation object, there was a
tendency for the forecast object to be too small. This analysis
suggests that both object count issues and incorrect size issues
are contributing to the frequency bias distribution in Fig. 8a,
with the magnitude of each factor likely having some depen-
dence on object size.

There was some variability in the area ratios (Fig. 8b); the
interquartile range of the area ratio distributions at each
size bin span 1.0, indicating there were forecast objects that
were too large as well as too small in each observation object
size bin. However, since the bulk of the distribution of area
ratios was less than 1.0, underforecasting of storm size was a
more common issue. As an example, consider the area ratio
distribution3 corresponding to observation object sizes around
1000 km2, where the median area ratio is about at minimum
(0.50 for HRRRv3 and 0.55 for HRRRv4). Since the area ra-
tio was ,1.0, the forecast storms corresponding to observa-
tion objects in this size bin were too small; if they were the
correct size there would be fewer forecast objects in this bin,
and the counts for those storms would be placed into larger
size bins when computing the object count bias as a function
of object size, resulting in a lower object count bias in the bin
centered on 900 km2 and a higher count bias in larger size
bins, overall leveling the object count bias curve in Fig. 7a.
Specifically, there would be fewer forecast objects in size bins
that are about 0.5 (the median area ratio) times the observa-
tion area {e.g., for the observation size bin of [800, 1000) km2,
the median size of the forecast objects would be in the
range [;400, ;500) km2}. If those forecast objects had the
correct size (800–1000 km2), then they would not be of size
400–500 km2, which means there would be fewer counts in
the [;400, ;500) km2 size bin when computing the object
count bias in Fig. 8a. Therefore, the object count bias would
decrease toward 1.0 in that size bin and would increase in
larger size bins. Applying this reasoning to the remaining size
bins suggests the object count bias curve would flatten if all
forecast objects were of the correct size, and instead a nearly
constant (across size bins) bias slightly above 1.0 would re-
main, which is the signature of the overall overproduction of
storms rather than improper storm size. The fact that both the
median area ratio tended to be slightly higher and the fre-
quency bias slightly lower in HRRRv4 compared to HRRRv3
in the medium and large size bins suggests that HRRRv4 may
have done better than HRRRv3 in producing reflectivity ob-
jects of the correct size.

HRRRv4 also did better than HRRRv3 in producing fewer re-
flectivity objects of small and medium size spatially (Figs. 9a,b).

FIG. 8. (a) Unconditional (i.e., no generalized matching) object
count bias, defined as Nforecast divided by Nobserved within each
area bin, and (b) forecast-to-observation area ratio (defined as
Farea divided byOarea) from generalized F-O object pairs as a func-
tion of the observation object area. Objects are valid at the
25-dBZ reflectivity threshold. Vertical bars in (b) represent the in-
terquartile range of the area ratio distributions within each area
bin and a slight x-axis offset is used to distinguish between
HRRRv3 and HRRRv4 curves. The stepping in (a) connects area
bin midpoints as a means of delineating the area bins; the same
bins are used for all area distributions in this paper.

3 The shape of the area ratio distribution varied by size bin; the
distribution was approximately Gaussian for the smallest and larg-
est bins but shifted toward an inverse exponential for the other
size bins.
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FIG. 9. As in Fig. 3a, but for (a) small, (b) medium-sized, and (c) large objects, each aggregated
across all forecast hours.
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The spatial distribution of the ratio of reflectivity objects be-
tween the two models shows that HRRRv4 produced fewer
small objects overall in parts of the Southeast United States
as well as most of the High Plains, including much of Texas,
whereas HRRRv4 produced more small objects across
the eastern plains, the Midwest, and the Appalachian region.
HRRRv4 produced somewhat fewer medium-sized objects
over most of the verification domain, with the biggest discrep-
ancy running along the coast of the Gulf of Mexico and the
High Plains. The two models forecast a similar number of me-
dium-sized objects over the Great Lakes region. HRRRv4 fore-
casts more large objects than HRRRv3 across nearly all the
verification domain, consistent with it having a higher frequency
bias for the largest size bins (Fig. 9c).

2) OTHER OBJECT ATTRIBUTES

Other attributes show a dependence on object size, too.
One such attribute is the aspect ratio. DT21 found an anoma-
lous spike in the distribution of aspect ratio values in the bin
of [0.80, 0.85). This spike also appears in the HRRRv4 data
but is restricted to the small objects (Figs. 10a,d,g). Upon further
examination, many of the objects whose aspect ratio fall into
this bin were revealed to be a reflectivity signature called a
“flower,” a relatively small and typically high-intensity reflectiv-
ity core flanked by at least one near-grid-scale, low-reflectivity
dot (petal), typically along one or both of the cartesian dimen-
sions. The classic flower signature contains four petals, one
along each of the west, north, east, and south flanks of the core.
Some flowers had fewer than four petals, whereas others had as
many as six. These flowers attracted the attention of NOAA/
GSL scientists when evaluating HRRRv3 forecasts (e.g., Turner
et al. 2020) and were not found in previous operational HRRR
versions. Attempts were made to reduce or eliminate such sig-
natures in HRRRv4, although to only limited success. Part of
the cause of these signatures is believed to be related to the
magnitude of the horizontal diffusion setting in the WRF, but a
more substantial diagnosis is beyond the scope of this paper.
Approximately 55% of nearly 1000 objects in this aspect ratio
bin that were manually inspected were classified as flowers in
HRRRv3 whereas 48% of about 700 manually inspected
HRRRv4 objects were classified as flowers, although the flow-
ers in HRRRv4 were typically less distinct. Flowers were found
in other aspect ratio bins, too, especially bins closer to 1.0, but
most were in the [0.80, 0.85) aspect ratio bin. The fact that the
spike in that particular bin of aspect ratios, and the fact that a
smaller fraction of objects with this description were flowers in
HRRRv4 compared to HRRRv3 suggests an amelioration of
this issue in HRRRv4 over HRRRv3.

In general, Fig. 10a shows that the distribution of aspect ra-
tios of HRRRv4 shifted closer to that of the MRMS data for
small objects compared to HRRRv3, although an overall bias
toward higher aspect ratios (more-circular objects) remains in
HRRRv4. There is a hint of a positive bias in aspect ratio for
medium-sized objects as well (Fig. 10d), although to less of an
extent as for the small objects. The distribution of aspect ratio
of large objects (Fig. 10g), on the other hand, is similar

between both HRRRs and the MRMS data, indicating a good
forecast of the shape of large reflectivity objects.

The shape of the distribution of object complexity also varied
with object size (Figs. 10b,e,h). Small objects had a predomi-
nately low complexity value in both models {mode value in the
[0.10, 0.15) bin}, and both exhibited a low bias compared to that
of the MRMS data, in which the mode of the complexity values
was in the range of [0.20, 0.25). This behavior was also noted in
DT21 and illustrates the under-resolved nature of objects of this
size, given they are smaller than an assumed square of side 7Dx.
Medium-sized objects also had a low complexity bias, although
not to the same extent as for the smallest objects; the distribu-
tions among the datasets have nearly the same shape with a
slight negative bias and positive skew that is worse in HRRRv3
compared to HRRRv4 (Fig. 10e). It is possible that the changes
in horizontal diffusion are responsible for the difference between
HRRRv3 and HRRRv4. It is unlikely that the initial conditions
contribute to this signature since the difference is approximately
steady with forecast length (not shown). Large objects have ap-
proximately the correct complexity distribution (Fig. 10h).

The distribution of object p95 values in the MRMS data is bi-
modal for small and medium-sized objects (Figs. 10c,f, respec-
tively), suggesting two separate behavioral modes were sampled.
The small objects have modes in with dBZ values in the low 30s
and upper 40s, whereas those for medium-sized objects are about
5 dBZ higher. This difference could be a matter of sampling: for
small objects, there may only be one or two grid points at which
the reflectivity is near its max, and thus the 95th percentile may
undercut the one-gridpoint-maximum value; whereas medium-
sized objects tend to comprise either multiple convective cores or
more mesoscale organization, and thus a broader reflectivity dis-
tribution, which makes it more likely that the 95th percentile value
more closely resembles the gridpoint maximum reflectivity within
the object. The lower-reflectivity mode occurs chiefly during the
evening through overnight and early morning when overall lower
convective instability results in somewhat weaker peak storm in-
tensities (Fig. 10c), whereas the higher-reflectivity mode appears
during the afternoon when individual storms tend to be more
intense in response to diurnally elevated instability. Neither
HRRRv3 nor HRRRv4 adequately capture the bimodal nature
of the p95 distribution, although the distribution is broader in
HRRRv4 than HRRRv3, suggesting a hint that the former ver-
sion may have attempted to resolve some of the detail exhibited
by the MRMS data.

Both HRRRv3 and HRRRv4 exhibited patterns in frequency
bias with respect to other object attributes as well. Both models
tended to overforecast the number of storms that are mostly lin-
ear and nearly circular (aspect ratios close to 0.0 and 1.0, respec-
tively; Fig. 11a). However, this behavior was less prominent in
HRRRv4 over HRRRv3. The signature for large aspect ratios is
consistent with the distribution of aspect ratio values for small ob-
jects indicating the presence of flowers. Since there are so few ob-
jects with aspect ratios close to 0.0, the higher frequency bias in
that range of aspect ratios is most likely noise, but still indicates a
tendency for the models to produce more linear objects than actu-
ally occurred.

Both models also tended to overforecast both the least-complex
and most-complex reflectivity objects, again with HRRRv4
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FIG. 10. Histograms of (a)–(c) small-sized, (d)–(f) medium-sized, and (g)–(i) large-sized reflectivity object (left) aspect ratio, (center)
complexity, and (right) p95 attributes aggregated across all forecast hours for objects defined at 25 dBZ. For p95, the distributions have
been split between diurnal and nocturnal groups to highlight differences for small- and medium-sized objects. The same y-axis scaling is
used across the panels in each row.
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exhibiting this behavior to a lesser degree (Fig. 11b). This is a
prominent finding since a substantial fraction of objects have low
complexity values, and this result suggests HRRRv4 produced
storms with more realistic structure compared to HRRRv3 even
though the grid spacing was the same between the two models.
Both models produced too few storms with moderate or large
complexities, especially at higher reflectivity thresholds. But again,
HRRRv4 tended to not be as bad as HRRRv3.

Both models also tended to overforecast the number of
storms with a high near-peak reflectivity value, especially for
the strongest storms (those with p95 values of 50 dBZ or
greater; Fig. 11c). We chiefly suspect this offset to be due to the
models’ representation of components of deep convective

storms such as updraft mass flux and conversion of vapor to
condensate and hydrometeors, including the distribution of var-
ious hydrometeor species within storms. Unfortunately, due to
a dearth of measurements of these quantities, it is impossible to
distinguish the relative impacts of these microphysics scheme
errors on the reflectivity forecasts. Higher updraft speeds per-
mitted by the IEVA scheme may have worsened this for
HRRRv4 given the slight uptick in bias in the 651-dBZ bin.
The role of the reflectivity diagnostic in the Thompson et al.
(2008) microphysics scheme within the HRRR must also be
considered; it includes an amplification factor at grid points
containing “wet” snow (snow with liquid water on its surface),
which is more likely to occur in storms with some mesoscale or-
ganization (i.e., medium-sized to large-sized objects), and there
is some indication of a worsening high bias for larger objects
(Fig. 10i).

d. The impact of generalized matching

Generalized matching produces a lesser-biased dataset
from which to perform forecast verification. A first-order
evaluation is to check how many objects in the datasets were
paired. About 1.4 million, 980 000, 645 000, and 300000 F-O
pairs were classified across all forecast hours at the 25-, 30-,
35-, and 40-dBZ thresholds, respectively, which amount to
about 55%–60% of the number of forecast and observation
objects in the full datasets, except at 40 dBZ where the frac-
tion is ;37%. Consistent with the high bias in the total num-
ber of objects, a substantially larger fraction of forecast
objects was unpaired compared to the number of observation
objects (cf. Figs. 12a,b). The fraction of unpaired forecast ob-
jects was smallest at forecast initialization and increased dra-
matically during the first few hours, then slowly thereafter.
The fraction of unpaired forecast objects also increased with
increasing reflectivity threshold, also consistent with the fre-
quency bias trend. In contrast to the forecast objects, far
fewer observation objects were unpaired. Other than at fore-
cast initialization in which only about 2%–7% of observation
objects were unpaired, about 10%–15% of observation ob-
jects were unpaired during the forecast. These values are con-
sistent with the imperfect PODs (based on pair interest
threshold of 0.70) that were around 0.95 at forecast initializa-
tion and decreased slowly from 0.70 to 0.60 throughout the
forecast (not shown). Ultimately, the fact that the number of
unpaired observation objects was anything but nearly zero
suggests the HRRR missed some objects, even despite its
overall high bias.

Object attributes remain imperfectly forecast when consid-
ering the lesser-biased set of objects obtained through gener-
alized matching. Consider object frequency bias as a function
of area (Figs. 13a,c). While some degree of high bias remains,
the values are much lower than for the full dataset, with the
bias for small objects reduced by about 90% compared to us-
ing the full set of objects (cf. Fig. 8a). Some low biases ap-
peared. Objects of size of O(100) km2 (HRRRv4) and about
2000 km2 (HRRRv3) and larger were reduced to having a low
bias, and the low bias for the largest objects was degraded
slightly. The relationship between frequency biases for HRRRv3

FIG. 11. Unconditional (i.e., full set of objects) forecast reflectiv-
ity object count biases as a function of object (a) aspect ratio,
(b) complexity, and (c) 95th percentile of reflectivity.
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and HRRRv4 was the same as for the full dataset (cf. Figs. 8a
and 13a), and the pattern for HRRRv4 is nearly the same as that
for HRRRv3 except shifted toward smaller object sizes; the
lower bias values for HRRRv4 compared to HRRRv3 for small-
and medium-sized objects makes it a poorer forecast than
HRRRv3. At higher thresholds, both models were approxi-
mately unbiased for all but the large objects (Fig. 13c). The larg-
est objects were substantially overforecast by both models, with
HRRRv4 forecasting more such objects than HRRRv3. The
similarity in bias ratios for the largest objects between the full set

(right side of Fig. 8a) and the reduced set obtained from general-
ized matching implies either that few objects were removed
from either the numerator (forecast object counts) or denomina-
tor (observation object counts) of the ratio, or that a similar
number were removed to maintain the ratio of object counts.
The former explanation seems more likely considering that cen-
troid location and area ratio were emphasized in the interest cal-
culation, so objects with similar locations and sizes are more
likely to have higher interest values and thus survive the general-
ized matching. Also, the nature of a large object is that it

FIG. 12. Fraction of all (a),(b) reflectivity and (c),(d) 6-h precipitation objects unpaired after generalized matching as a
function of forecast lead time. Values for (left) forecast objects and (right) observation objects.
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occupies more areal space, which limits the number of objects
that could be located close to the object’s own centroid, and
therefore limit the interest value with nearby objects in the other
dataset, which suggests little change should occur when perform-
ing generalized matching.

While the object count bias as a function of most other at-
tributes decreased by a similar magnitude as to object area
when comparing the full set of objects to the reduced set ob-
tained through generalized matching, that as a function of p95
value changed little with generalized matching (Fig. 13b). The
fact that the median ratio of forecast to observation p95 val-
ues in the generalized matching set was less than 1.0 for reflec-
tivity values of 55 dBZ and higher (Fig. 13d) is intriguing.

However, since the weight assigned to the intensity percentile
ratio for computing object pair interest was 3.5 compared to 5.0
for centroid distance and 4.0 for minimum boundary and convex
hull distance, as well as to area ratio, it is likely that the forecast
object that best matched a given observation object did so due
to a better resemblance of those location and size attributes
rather than resembling the near-max reflectivity. It must have
been the case that this difference in weighting caused the match-
ing algorithm to favor closer storms that happened to be weaker
rather than matching a stronger forecast storm to the observed
storm. This observation also may unmask some of the sensitivity
to the results that comes from the choice of attribute weights for
the interest calculation.

FIG. 13. Conditional reflectivity object frequency bias from generalized matching as a function of observation object
area for objects defined at the (a) 25- and (c) 35-dBZ thresholds. (b) Reflectivity object frequency bias as a function of
(observation) object 95th percentile of reflectivity for both the conditional (“gen”) and unconditional (“full”) object
sets. (d) Forecast-to-observation ratio of object 95th percentile of reflectivity from the generalized matching set. Panels
(b) and (d) are also valid at the 25-dBZ threshold. All data are aggregated across all forecast hours. Vertical bars in
(d) illustrate variance as in Fig. 7b. Due to poor sample size, data were omitted in bins of 55 dBZ and greater in
(b) and (d).
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4. 6-h precipitation results

Stage IV precipitation observations were less readily avail-
able than MRMS composite reflectivity observations, and
therefore an average of about 1250 cases were verified in each
of the first 18 forecast hours for 6-h precipitation. About
100 000, 70 000, 50 000, 35 000, and 17 500 forecast precipita-
tion objects were classified at the 0.254-, 2.54-, 6.35-, 12.7-,
and 25.4-mm thresholds, respectively. The distribution of sizes
of 6-h precipitation objects was nearly identical to that of the
composite reflectivity objects except the smallest objects con-
stituted a slightly smaller fraction of all objects and the largest
objects constituted a slightly larger fraction (not shown). Con-
sidering the causal relationship between composite reflectivity
and precipitation and factoring in the temporal aggregation,
this result is sensible.

a. Object frequency bias

Scalar metrics indicate mixed performance between HRRRv3
and HRRRv4 for 6-h precipitation. The object-based frequency
bias for 6-h precipitation looks overall similar to that for compos-
ite reflectivity in that biases are all generally above 1.0, indicating
overforecasting of precipitation regions (Fig. 14a). Also similar to
composite reflectivity, the bias tended to increase with forecast
lead time. HRRRv4 was less biased than HRRRv3 throughout
the forecast except after forecast hour 24 at the 0.254-mm thresh-
old, where the two models had similar biases. HRRRv4 was
nearly unbiased at forecast hours 0–6. As with composite reflectiv-
ity, most of the total high frequency bias in the object counts
came from the smallest objects, reflecting the precipitation
produced by the excessive number of small reflectivity ob-
jects (not shown). However, the medium-sized objects also
had a high bias, but to less of an extent than the small ob-
jects. The largest precipitation objects actually had a sub-
stantial low bias.

Frequency biases tended to be highest around 0000 UTC
(early evening) and lowest around 1200 UTC (morning;
Fig. 14b). Both models exhibited the same diurnal swapping
of order seen in the composite reflectivity frequency biases
around 0000 UTC, with HRRRv4 having an overall lower
bias during the afternoon and early evening and a higher bias
otherwise. While HRRRv3 was nearly unbiased during the
morning and early afternoon at the 0.254-mm threshold, it
had such a high bias at the 25.4-mm threshold that HRRRv4
only had a higher bias at 1200 and 1500 UTC at that threshold
and otherwise had a lower bias.

The overall lower biases in 6-h precipitation compared to
composite reflectivity are consistent with the fraction of un-
paired objects (Figs. 12c,d). A substantially lower fraction of
forecast precipitation objects was unpaired in the generalized
matching compared to composite reflectivity objects. However,
the fraction of unpaired forecast 6-h precipitation objects was
higher than that of the unpaired observation objects. There
was a decrease in the fraction of unpaired observation objects
during the early part of the forecast, which contrasts with
the increase seen in this quantity for composite reflectivity.
However, the fraction decreases after forecast hour 1 in com-
posite reflectivity, so this may also be happening in the

precipitation field but is being smoothed out by the temporal
aggregation.

b. Total forecast metrics

As a result of its higher bias, HRRRv3 tended to have a higher
POD, but at the expense of a slightly higher FAR as well (not
shown). The bias was enough to penalize HRRRv3 in terms of
OTS, which was slightly lower than for HRRRv4 (Fig. 15a). OTS

FIG. 14. As in Fig. 2, but for 6-h precipitation.
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decreased slowly throughout the forecast, similar to the trend in
OTS values for composite reflectivity. Except for the first six fore-
cast hours, HRRRv3 generally had lower mean centroid distances
than HRRRv4 (Fig. 15b). Overall, mean centroid distances for
6-h precipitation increased steadily throughout the forecast and
were much larger than those for composite reflectivity, ranging
from 230 to 320 km. The increase in distance with lead time is

steeper than for composite reflectivity. The overall broader scale
of 6-h precipitation objects and degrees of freedom of distribution
of precipitation within the objects is likely the main factor in this
difference. As with composite reflectivity, the two-dimensional
pattern of centroid errors was broadly isotropic, although there
was a slight preference toward an error in the southeastward di-
rection (not shown). This preference was slightly stronger for
HRRRv4 than HRRRv3, but the difference in mean distance is a
matter of a few kilometers. This contrasts with the slight north-
westerly centroid error bias in composite reflectivity.

CRPSS values generally favored HRRRv4 for quality of
precipitation forecast object attributes. The distributions of
forecast object aspect ratio and complexity, in particular,
were much better forecast by HRRRv4 than by HRRRv3.
This is clearly visible from visual inspection of the distribution
of these attributes at any given lead time and precipitation
threshold (not shown). The HRRRv4 clearly alleviated some
noticeable deficiencies evident in the distributions of these at-
tributes in HRRRv3, including a low bias for complexity in
HRRRv3 that was alleviated, although not completely elimi-
nated, in HRRRv4 (Fig. 16a), and a spike in the same aspect
ratio bin as was seen with flowers in composite reflectivity.
The removal of this statistical mass from that bin in HRRRv4
was sufficient to result in CRPSS values above 0.5 (Fig. 16b).
The distribution of object areas was better forecast by
HRRRv4 than by HRRRv3 except for during the early parts
of the forecast (and more of the forecast at lower precipita-
tion thresholds; Fig. 16c). Since all datasets herein are domi-
nated by small objects and the frequency bias of the small and
medium-sized objects is lower in HRRRv4 than in HRRRv3,
similar to composite reflectivity, that is the source of improve-
ment that manifests in the positive CRPSS values. This im-
provement in frequency bias is more pronounced at higher
thresholds; hence the increased CRPSS values at higher
thresholds. The CRPSSs for p99 values, on the other hand,
showed poorer performance in HRRRv4 compared to
HRRRv3 (Fig. 16d); CRPSS , 0.0 at all thresholds and fore-
cast lead times. These negative CRPSSs likely manifest from
the degraded high bias in the number of 6-h precipitation ob-
jects with high p99 values as discussed in connection with
Fig. 18b below.

c. Analysis from generalized matching

One of the most important aspects of spatial precipitation
verification is how much overlap occurs between forecast and
observed areas of rainfall, otherwise known as a “hit” in a 23 2
contingency table. The number of hits strongly impacts a given
forecast performance metric but is almost always aggregated
over a large spatial domain, which inhibits analysis of precipita-
tion coverage overlap on local scales. Object-based verification,
on the other hand, enables such analysis by examining various
statistics describing the intersection area in an F-O object pair.
Here we chose to use the consumption ratio. However, this met-
ric can belie forecast quality if there is a high area bias, which is
a problem for the HRRR. Therefore, consumption ratio must
be analyzed in conjunction with other size-dependent metrics to
get a more complete sense of the forecast quality. The median

FIG. 15. (a) OTS and (b) mean centroid distance between gener-
alized 6-h precipitation F-O object pairs, both as a function of fore-
cast lead time.
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consumption ratio (Fig. 17a) was 0.0 for the smallest observa-
tion objects, consistent with object pairs having no spatial over-
lap (in essence, a “miss”). At sizes larger than 500–700 km2

consumption ratios rapidly increased with increasing observa-
tion area up to almost 10000 km2, above which the rate of in-
crease slowed. The largest objects and those defined at the
lightest precipitation threshold had the highest consumption

ratios (median of about 0.8). Considering both that the 75th per-
centile of the consumption ratio distribution was below 0.9 and
the median area ratio for the largest objects was about 0.8–0.9
(Fig. 17b), it is apparent that there was significant displace-
ment between large observation objects and their corre-
sponding forecast object such that the forecast objects in
the F-O object pairs, which were usually smaller than the

FIG. 16. HRRRv4 CRPSSs (using HRRRv3 as the reference forecast) for the following 6-h precipitation object attrib-
utes: (a) complexity, (b) aspect ratio, (c) area, and (d) p99. All scores plotted as a function of forecast hour.
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observation object, were not fully encompassed by the ob-
servation object; In fact only about 80%–90% of the smaller
of the two was contained within the bounds of its corre-
sponding larger object. The median value of the consump-
tion ratio tended to be slightly higher in HRRRv4 than in
HRRRv3, but the ordering of the area ratios was inverted
from that. HRRRv4 precipitation objects were overall
smaller than HRRRv3 precipitation objects (not shown), so
the increased consumption ratio in HRRRv4 suggests ob-
jects in the latter either were closer to or fit better the obser-
vation objects than those in HRRRv3.

Another of the most important aspects of precipitation
forecasting is the amount, either in an areal sense or as a point

maximum. The models’ ability to forecast the maximum pre-
cipitation amount in each object (p99) varied by rainfall
amount (Fig. 18a). Both models forecast objects with light
and moderate precipitation amounts with approximately the
correct frequency. However, they also substantially overfore-
cast the number of objects with heavy peak rainfall amounts
centered around 100 mm, followed by an adequate forecast of
the number of objects with the most extreme precipitation
maxima. This overforecasting was extreme, with object count
ratios up to 4.0, and was worse in HRRRv4. The objects asso-
ciated with this spike in bias are mostly large objects with
higher complexity than objects with p99 values further from
100 mm (Fig. 18b). Total precipitation object mass was gener-
ally underforecast by both models, although both models
slightly overforecast the mass of precipitation objects with
low total rain mass (Fig. 18c). Neither model performed
clearly better than the other with respect to object precipita-
tion mass. The IEVA scheme could be contributing to the
increased precipitation object count through more intense
convective updrafts producing more precipitation.

5. Summary and conclusions

The High-Resolution Rapid Refresh model, a flagship con-
vection-allowing forecast system useful for short-term high-
impact weather, has been running operationally since 2014. The
composite reflectivity and 6-h precipitation fields from versions 3
and 4, which ran in parallel during a portion of the 2019 and
2020 warm season months, were evaluated against each other us-
ing an object-based approach introduced in a companion paper
(Duda and Turner 2021) and expanded herein. The purpose of
this object-based verification study was to compare the perfor-
mance of the two model versions to determine if the updates
from version 3 to 4 resulted in improved forecasts of reflectivity
and precipitation, and to elucidate specific aspects of where each
forecast succeeded and where each forecast needed improve-
ment in a way that traditional grid-to-grid verification would
not be able to provide information. This study generated a
large sample size, and statistical significance tests for the dif-
ferences in forecast performance failed to provide a clear dis-
tinction between HRRRv3 and HRRRv4 in terms of forecast
quality. Nonetheless, many overall scalar metrics at least
hinted that HRRRv4 may have outperformed HRRRv3 in
many ways, but may have degraded performance compared
to HRRRv3 in others.

Substantial high storm count biases were confirmed in the
2020 forecasts from HRRRv3 to corroborate the high biases
also found in 2019 in DT21. While the storm count bias in
HRRRv4 was somewhat reduced compared to HRRRv3 during
most of the forecast, HRRRv4 presented worse problems with
overforecasting the smallest storms compared to HRRRv3.
However, during the afternoon, HRRRv4 had a lower high
bias in storm counts compared to HRRRv3. Since the lower
bias was most strongly present in older forecasts (not shown),
this change is unlikely to be related to improved initial conditions
from the changes to the data assimilation, which suggests that an
improvement in the model physics led to more realistic predic-
tion of the diurnal cycle of storm counts. These differences were

FIG. 17. (a) Consumption ratio as a function of observation ob-
ject area, and (b) as in Fig. 8b, but for 6-h precipitation objects (ob-
tained from generalized matching). Data are valid at the 0.254-mm
threshold. Vertical bars and horizontal staggering are as in Fig. 8b.
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not spatially uniform, however; HRRRv4 tended to produce
more storms than HRRRv3 in the Midwest and fewer storms in
an arc across the Southeast United States through the southern
plains and into the central High Plains. A detailed analysis of
storm size comparisons revealed that the high count bias was due
to two factors: 1) overproduction of new storms and 2) existing
storms being too small.

Considering individual object attributes, DT21 revealed an
anomalous spike in the distribution of reflectivity object as-
pect ratios that was identified as a computational/dynamical
artifact called a flower. A larger fraction of inspected suspect
objects in HRRRv3 were classified as flowers compared to
HRRRv4, so the reduction in the spike in the aspect ratio dis-
tribution in HRRRv4 compared to HRRRv3 reflects the
modest improvement in reducing the presence of flowers in
HRRRv4. Although both models struggled with handling the
reflectivity object complexity attribute, HRRRv4 tended to
handle it better. The disparity in complexity between the
models and MRMS reflects the discrepancy in horizontal
length scales resolved in each dataset, even though both were
interpolated to the same grid before running MODE. Finally,
it was found that both HRRR versions did not capture the ob-
served distribution of near-max reflectivity value within ob-
jects. In particular, the models produce too many objects with
a high near-peak reflectivity value, suggesting the HRRR in-
tensifies convective storms too much and that the distribution
of hydrometeors within modeled convective storms does not
match that in the observations. But there may be other issues
as well.

In an attempt to account for object count bias, a general-
ized matching procedure was used that selected F-O object
pairs consisting of forecast and observation objects that are
uniquely linked to each other (i.e., each object is paired to at
most one object in the other dataset). The generalized match-
ing procedure created a new set of object pairs in which the
large objects were substantially overforecast in number, the
aspect ratio and complexity distribution shapes were largely
unchanged, and objects with low near-max reflectivity values
tended to be predicted to have a larger reflectivity value and
vice versa, in spite of the overwhelming overforecasting of the
high near-max reflectivity objects. This generalized matching
technique therefore revealed that high storm count biases are
not the only source of deficiencies in reflectivity object fore-
casting from the HRRR. Notably, percentile-based threshold-
ing (98th and 99th percentiles) was also examined. While object
count biases decreased up to 25%, they remained above 1.0
throughout the forecast. The biases between HRRRv3 and
HRRRv4 were reduced except for during the middle of the
forecast when HRRRv4 retained a lower bias than HRRRv4.
Beyond bias, percentile-based thresholding resulted in a dra-
matic reduction in differences between HRRRv3 and HRRRv4
in most metrics, in particular the OTS. Peculiarly, HRRRv4 ob-
ject attribute distributions shifted toward those of HRRRv3
whereas the HRRRv3 distributions did not shift closer to the
MRMS observations. These results raised questions that are be-
yond the scope of this paper and are left for future work.

Most scalar metrics evaluated herein suggest HRRRv4 fore-
cast 6-h precipitation better than HRRRv3, although there were

FIG. 18. (a) Unconditional forecast 6-h precipitation object count
bias as a function of object 99th percentile of precipitation amount;
(b) conditional distribution of object areas based on p99; (c) fore-
cast-to-observation ratio of 6-h precipitation object masses as a
function of observation object mass for generalized matching ob-
ject pairs.
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exceptions. While both versions overforecast the total number
of precipitation objects, HRRRv4 had a less severe bias than
HRRRv3, and HRRRv4 better forecast most object attribute
distributions than HRRRv3. However, HRRRv4 precipitation
objects had a higher mean centroid displacement than HRRRv3
and HRRRv4 had a more severe problem overforecasting ob-
jects with a high maximum precipitation amount. Subsequent
analysis pointed to this problem arising from the largest precipi-
tation objects, which directs model developers toward examina-
tion of where high precipitation amounts are coming from in
large precipitation objects.

In general, it can be concluded that the changes made to the
model physics, dynamics, and data assimilation led to distinct
differences of behavior in HRRRv4 compared to HRRRv3, but
the extent to which these changes led to improvements in these
storm-specific fields is both statistically insignificant and varied
depending on a variety of conditions (field, field threshold, time
of day, forecast hour, location within the United States). How-
ever, this paper introduced topics and metrics for ways to com-
pare two forecasting systems using an object-based approach.
This work presents the next step in developing a rigorous ap-
proach to using object-based verification to assess NWP model
performance. We will continue to expand this object-based ap-
proach into more areas of CAM-scale NWP that are not yet
regularly assessed. This includes applying object-based verifica-
tion to an ensemble such as HRRRE and implementing the
time-dimension to assess not only spatial, but temporal errors
and biases in CAM forecasts as well. Future work should also
consider a morphological breakdown of reflectivity object-based
verification by considering storm types such as cellular, linear,
and bowing. We have taken initial strides to examine the mor-
phology aspect, but the inherent subjectivity has so far ham-
pered efforts in this venture. A possible way to compress this
kind of object-based verification is to perform the analysis only
on objects defined at the lowest threshold (a minimum to opti-
mally capture individual objects), but classify the objects based
on whether the maximum value within the object exceeds the
given thresholds rather than classifying objects based on the
area in which the field exceeds the fixed threshold (e.g., 35 dBZ)
exceeding a minimum size (16 grid squares), as was done here.
Finally, we anticipate applying this verification exercise to the
upcoming replacement for HRRRv4, the Rapid-Refresh Fore-
cast System (version 1), which is tentatively scheduled to replace
HRRRv4 in late 2024 or early 2025.
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